The circuit has three parts: the sensor, main control unit, and relay driver. It works on 230V AC mains. A bulb used in the circuit acts as a load for demonstration purpose. When the room temperature goes beyond the set limit the bulb switches on automatically. The author's prototype is shown in Fig. 1.
Circuit and working
Circuit diagram of the temperature controlled switch is shown in Fig. 2. The circuit comprises step-down transformer X1, bridge rectifier BR1, 5V voltage regulator 7805 (IC1), temperature sensor LM35 (IC2), op-amp LM35 (IC3), 5V single changeover relay RL1, and a few other components. Capacitor C1 connected across the supply terminals minimises any ripples or noise signals in the voltage.
The circuit needs 5V DC to operate, which is derived from the 9V, 500mA secondary side of transformer X1. The 230V AC mains is connected to the primary of X1 via CON1 in the circuit whose 9V AC secondary is connected to bridge rectifier BR1 for rectification. The rectified and filtered voltage (by C1) is given to IC LM7805 to get regulated 5V for the circuit.
Glowing of LED1 indicates that 5V is being supplied to the circuit.
هذه القصة مأخوذة من طبعة January 2023 من Electronics For You.
ابدأ النسخة التجريبية المجانية من Magzter GOLD لمدة 7 أيام للوصول إلى آلاف القصص المتميزة المنسقة وأكثر من 9,000 مجلة وصحيفة.
بالفعل مشترك ? تسجيل الدخول
هذه القصة مأخوذة من طبعة January 2023 من Electronics For You.
ابدأ النسخة التجريبية المجانية من Magzter GOLD لمدة 7 أيام للوصول إلى آلاف القصص المتميزة المنسقة وأكثر من 9,000 مجلة وصحيفة.
بالفعل مشترك? تسجيل الدخول
TRULY INNOVATIVE ELECTRONICS -INNOVATION UPDATES
Amongst numerous press releases of new products received by us, these are the ones we found worthy of the title Truly Innovative Electronics
Elastomer enhancing smart wearable performance
A high-tech, flexible wearable device made from the innovative elastomer material
Nanotechnology based noninvasive cancer diagnostics
Nanoflake sensors built from indium oxide with platinum and nickel detect changes in isoprene
Space communication with silent amplifiers
In the new communication system from researchers at Chalmers University of Technology, in Sweden, a weak optical signal (red) from the spacecraft's transmitter can be amplified noisefree when it encounters two so-called pump waves (blue and green) of different frequencies in a receiver on Earth.
Advancements in TOPCon solar cells
The structure and performance of tandem devices with highly passivated TOPCon bottom cells
Quantum leap in magnetism refines superconductors
Rice University physicists have uncovered key magnetic and electronic properties in kagome magnets, structures resembling basket-weaving patterns.
Sensor targets food antioxidants
A research team from Hunan City University and Xiangtan University in China has developed a sensor for detecting TBHQ, a food antioxidant used in oils and fats, addressing health concerns at high concentrations.
Data sensing with repurposed RFID tags
UC San Diego researchers have advanced passive data collection with a breakthrough in battery-free sensing.
Seal-inspired sensors to safeguard offshore wind farms
Schematic structure of the seal whisker-inspired flow sensors
Artificial nose identifies scents accurately
Artificial nose identifies scents accurately