
Q. Why do you feel there is a need to reimagine cybersecurity?
A. Let me take you back to 2016. About five-and-a-half years ago, there were several things happening in India and also globally. In 2016, demonetisation happened and India decided to go digital—from a cash based economy to a cashless economy. PhonePe, UPI, etc, came up. Everybody in the country has started doing things using digital platforms. India is becoming a truly digital economy, except for a few cash based activities. Healthcare, social security, and banking, all happen digitally.
First of all, today’s encryption is based upon a complex mathematical problem that can’t be broken by current classical computers and supercomputers but hackers will be able to break the encryption using scalable quantum computers. The second thing is that encryption keys today are generated once in a while. They should be generated more frequently and should be random. You will be surprised to find out that large enterprises typically have about 85,000 keys. Most of these keys do not change for two to three years! Now imagine if a key is stolen by somebody and the person decrypts the data and steals it.
Whenever a breach happens, people are worried about data loss, but they do not know that they also lose the encryption keys. When people hack into a server, they not only take away the data but also the encryption keys—so that they can steal data in the future as well.
هذه القصة مأخوذة من طبعة October 2022 من Open Source For You.
ابدأ النسخة التجريبية المجانية من Magzter GOLD لمدة 7 أيام للوصول إلى آلاف القصص المتميزة المنسقة وأكثر من 9,000 مجلة وصحيفة.
بالفعل مشترك ? تسجيل الدخول
هذه القصة مأخوذة من طبعة October 2022 من Open Source For You.
ابدأ النسخة التجريبية المجانية من Magzter GOLD لمدة 7 أيام للوصول إلى آلاف القصص المتميزة المنسقة وأكثر من 9,000 مجلة وصحيفة.
بالفعل مشترك? تسجيل الدخول

Modelling Toeplitz Networks with SageMath
A Toeplitz network refers to a graph that has a comparable regularity in its structure. SageMath is an excellent tool for facilitating the creation, analysis, and visualisation of graphs. Hence, SageMath can be used to effectively model Toeplitz networks and get insights into their structural characteristics, leading to advancements in network design and analysis.

It's the Age of AI Agents!
Businesses must get ready to work with AI agents if they want to stay competitive. Many have already adopted them, while others are gearing up to do so. These agents will soon be part of almost every organisation, making up a large global digital workforce.

Building Machine Learning Models with Scikit-learn
Scikit-learn scores over other machine learning libraries because it is easy to use, comes with a comprehensive feature set, has strong community support, and is customisable. Here's a quick look at its features and use cases.

SageMath: Deeper Insights into Cybersecurity
In the previous article in this SageMath series (published in the January 2025 issue of OSFY), we concluded our discussion of classical encryption techniques and moved on to the exploration of modern cryptography by looking at symmetric-key cryptography. In this ninth article in the series, we will continue the focus on symmetric-key cryptography.

Why You Should Go for Grafana
Explore the main characteristics of Grafana, the open source analytics and visualisation tool for application in the Internet of Things, and see how it compares with other similar popular tools.

Metaverse and Digital Twins: Partnering to Innovate
Let's explore Al-powered digital twin technology and the Metaverse, delving into what they promise, their limitations, and how large language models and generative Al help address these challenges.

How Open Source LLMs are Shaping the Future of AI
The future of AI isn't locked behind proprietary paywalls—it's open and collaborative, with open source LLMs giving businesses the power to innovate on their own terms.

Netbooting a Large Language Model-based OS in an Ubuntu Live Server
This brief tutorial explores the wireless netbooting of the LLM model Gemini AI in an Ubuntu server.

NLP: Text Summarisation with Python
Here's a simple Python method based on the Natural Language Toolkit for extractive text summarisation in natural language processing.

MLOps vs AlOps: What, Where, and Why
MLOps and AIOps excel at driving efficiency and innovation in an organisation. Let's find out what they are, where they can be used, and why we should do so.