Connecting every ‘thing’ that we see around us to the Internet is the fundamental idea of the Internet of Things (IoT). There are many operating systems to get the best out of the things that are connected to the Internet. This article explores four popular operating systems for IoT — Ubuntu Core, RIOT, Contiki and TinyOS.
To say that life is running on the Internet these days is not an exaggeration due to the number and variety of services that we consume on the Net. These services span multiple domains such as information, financial services, social networking and entertainment. As this list grows longer, it becomes imperative that we do not restrict the types of devices that can connect to the Internet. The Internet of Things (IoT) facilitates connecting various types of ‘things’ to the Internet infrastructure. By connecting a device or thing to the Internet, these things get the ability to not only interact with the user but also between themselves. This feature of a variety of things interacting among themselves to assist users in a pervasive manner constitutes an interesting phenomenon called ambient intelligence.
IoT is becoming increasingly popular as the types of devices that can be connected to it are becoming more diverse. The nature of applications is also evolving. Some of the popular domains in which IoT is getting used increasingly are listed below
Smart homes
Smart cities
Smart agriculture
Connected automobiles
Smart shopping
Connected health
As the application domains become diverse, the need to manage the IoT infrastructure efficiently is also becoming more important. The operating systems in normal computers perform the primary functions such as resource management, user interaction, etc. The requirements of IoT operating systems are specialised due to the nature and size of the devices involved in the process. Some of the important characteristics/requirements of IoT operating systems are listed below
A tiny memory footprint
Energy efficiency
Connectivity features
Hardware-agnostic operations
Real-time processing requirements
Security requirements
Application development ecosystem
This story is from the September 2019 edition of Open Source For You.
Start your 7-day Magzter GOLD free trial to access thousands of curated premium stories, and 9,000+ magazines and newspapers.
Already a subscriber ? Sign In
This story is from the September 2019 edition of Open Source For You.
Start your 7-day Magzter GOLD free trial to access thousands of curated premium stories, and 9,000+ magazines and newspapers.
Already a subscriber? Sign In
Amazon Bedrock: A Boon for the Financial Services Industry
Amazon Bedrock is a fully managed service that provides access to foundation models from top AI providers, enabling organisations to build and scale generative AI applications. It is specifically designed to bring AI solutions to the financial sector. Let's explore all that it can do...
Quantum-Safe VPNs: The Future of Secure Communication
As quantum computing continues to advance, it poses a significant threat to traditional cryptographic algorithms that secure our digital communications. Virtual private networks (VPNs), which rely heavily on encryption, are particularly vulnerable. Quantum-safe VPNs utilise post-quantum cryptographic algorithms to protect against quantum attacks.
Popular Open Source Toolkits for Quantum Machine Learning
Quantum machine learning is becoming increasingly popular due to its ability to solve the complex problems of the AI age. Here are a few open source libraries and frameworks that help with quantum computations.
Quantum Computing: Harnessing Open Source for Innovation and Accessibility
We explore how open source initiatives are shaping the future of quantum computing, making it more accessible and driving innovation through collaboration.
How Quantum Computing Differs from Classical Computing
Despite being in its infancy, quantum computing has numerous potential applications in modelling, cybersecurity, AI/ML, and other fields. But how do quantum and classical computing compare with each other? Let's find out...
From Bits to Qubits: The Growth Story of Quantum Computing
Quantum computing may still be in the early stages of evolution, but its potential impact on everyday life is significant. We delve into the key concepts behind it, the reasons for its rapid growth, and how global advancements are shaping its future.
Pytket: A Comprehensive Guide to Quantum Circuit Design
Pytket stands out as a powerful toolkit in the realm of quantum computing, offering a suite of features that cater to both researchers and industry practitioners. Its key strengths include optimisation, platform-agnostic support, flexible quantum circuit design and hybrid algorithm support. These features make Pytket a versatile tool for various quantum computing applications, from machine learning and cryptography to optimisation problems in industrial settings.
Cirq: The Open Source Framework for Programming Quantum Computers
Explore the key features, capabilities, and impact of Cirq, an open source quantum computing framework developed by Google, on the quantum programming landscape.
The Role of Open Source in Accelerating Quantum AI
Here's an overview of how open source frameworks are being utilised to build quantum machine learning models, including quantum neural networks and quantum kernel methods. The challenges and future directions in the quantum AI landscape are also discussed.
Quantum Machine Learning: An Overview
Quantum machine learning (QML) is a burgeoning field at the intersection of quantum computing and artificial intelligence. In recent years, the integration of quantum mechanics with machine learning algorithms has sparked substantial interest among researchers and technologists alike. Here's a quick look at the essentials of creating quantum algorithms for AI models, their practical use cases on open source platforms, and best practices for implementing these advanced algorithms.