Data Science with Jupyter - First Edition 2019Add to Favorites

Data Science with Jupyter - First Edition 2019Add to Favorites

Subscribe to Data Science with Jupyter

Diese Ausgabe kaufen $5.99

Geschenk Data Science with Jupyter

7-Day No Questions Asked Refund7-Day No Questions
Asked Refund Policy

 ⓘ

Digital Subscription.Instant Access.

Digitales Abonnement
Sofortiger Zugriff

Verified Secure Payment

Verifiziert sicher
Zahlung

In dieser Angelegenheit

First Edition 2019

Data Science with Jupyter Magazine Description:

VerlagBPB Publications

KategorieAcademic

SpracheEnglish

HäufigkeitOne Time

Step-by-step guide to practising data science techniques with Jupyter notebooks

Key Features
• Acquire Python skills to do independent data science projects
• Learn the basics of linear algebra and statistical science in Python way
• Understand how and when they're used in data science
• Build predictive models, tune their parameters and analyze performance in few steps
• Cluster, transform, visualize, and extract insights from unlabelled datasets
• Learn how to use matplotlib and seaborn for data visualization
• Implement and save machine learning models for real-world business scenarios

Description
Modern businesses are awash with data, making data driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with just enough knowledge of Python in conjunction with skills to use powerful tool such as Jupyter Notebook in order to succeed in the role of a data scientist.

The book starts with a brief introduction to the world of data science and the opportunities you may come across along with an overview of the key topics covered in the book. You will learn how to setup Anaconda installation which comes with Jupyter and preinstalled Python packages. Before diving in to several supervised, unsupervised and other machine learning techniques, you’ll learn how to use basic data structures, functions, libraries and packages required to import, clean, visualize and process data. Several machine learning techniques such as regression, classification, clustering, time-series etc have been explained with the use of practical examples and by comparing the performance of various models.

By the end of the book, you will come across few case studies to put your knowledge to practice and solve real-life business problems such as building a movie recommendation engine, classifying spam messages, predicting the ability of a borrower to repay loan on time and time series forecasting of housing prices. Remember to practice additional examples provided in the code bundle of the book to master these techniques.

Who this book is for
The book is intended for anyone looking for a career in data science, all aspiring data scientists who want to learn the most powerful programming language in Machine Learning or working professionals who want to switch their career in Data Science. While no prior knowledge of Data Science or related technologies is assumed, it will be helpful to have some programming experience.

Table of Contents
1 Data Science Fundamentals
2 Installing Software and Setting up
3 Lists and Dictionaries
4 Function and Packages
5 NumPy Foundation
6 Pandas and Dataframe
7 Interacting with Databases
8 Thinking Statistically in Data Science
9 How to import data in Python?
10 Cleaning of imported data
11 Data Visualization
12 Data Pre-processing
13 Supervised Machine Learning
14 Unsupervised Machine Learning
15 Handling Time-Series Data
16 Time-Series Methods
17 Case Study – 1
18 Case Study – 2
19 Case Study – 3
20 Case Study – 4

About the Author
Prateek is a Data Enthusiast and loves the data driven technologies. Prateek has total 7 years of experience and currently he is working as a Data Scientist in an MNC. He has worked with finance and retail clients and has developed Machine Learning and Deep Learning solutions for their business. His keen area of interest is in natural language processing and in computer vision. In leisure he writes posts about Data Science with Python in his blog.

  • cancel anytimeJederzeit kündigen [ Keine Verpflichtungen ]
  • digital onlyNur digital