Harvesting Ambient Energy
Circuit Cellar|December 2024
Hybrid Power Sources Cut IoT Battery Dependency
Tom Murphy
Harvesting Ambient Energy

Remote IoT sensor nodes have a battery problem. Constant replacements send millions of cells to the landfill and imperil groundwater. Replacement costs present scaling issues for hyperscale sensor networks. Energy Harvesting technology is advancing with efficiency and hybrid sources, leading the way to a more scalable, battery-less future.

Imagine, if you will, a long line of limber conga dancers lining up at landfills worldwide. Instead of happy revelers filling up a grand ballroom, all dancing in time to a festive Latin beat, "cha-chacha-cha-boom," we see a long parade of lead-acid batteries making their way into large open pits and dropping one by one to the bottom.

Then, they are covered with dirt and sit subjected to pressure, moisture, heat, and decay as they leak toxic chemicals into the earth, contaminating our underground drinking water reserves with endless toxins.

According to some estimates, as many as 6 million batteries a day or 25 billion a year end up in landfills after expending their valuable energy generation on billions of IoT devices and consumer electronics.

The Internet of Things has promised to make our world safer and more reliable with better efficiency, intelligence, comfort, precision, and utility. But it has also created the need for more batteries to power remote sensor nodes everywhere: in factories, cities, buildings, around farms, in the home, or worn around the body.

About 24 years ago, the objective of one company was to collect ambient energy in situ from the surrounding environment, store it in a supercapacitor, and have it available to power on an embedded sensor node when it woke up to record an event for data logging.

Diese Geschichte stammt aus der December 2024-Ausgabe von Circuit Cellar.

Starten Sie Ihre 7-tägige kostenlose Testversion von Magzter GOLD, um auf Tausende kuratierte Premium-Storys sowie über 8.000 Zeitschriften und Zeitungen zuzugreifen.

Diese Geschichte stammt aus der December 2024-Ausgabe von Circuit Cellar.

Starten Sie Ihre 7-tägige kostenlose Testversion von Magzter GOLD, um auf Tausende kuratierte Premium-Storys sowie über 8.000 Zeitschriften und Zeitungen zuzugreifen.

WEITERE ARTIKEL AUS CIRCUIT CELLARAlle anzeigen
New TI MCUs Enable Edge AI and Industry-Leading Real-Time Control to Advance Efficiency, Safety, and Sustainability
Circuit Cellar

New TI MCUs Enable Edge AI and Industry-Leading Real-Time Control to Advance Efficiency, Safety, and Sustainability

Texas Instruments (TI) introduced two new series of real-time microcontrollers that deliver advancements to help engineers achieve more intelligent and secure processing in automotive and industrial applications.

time-read
1 min  |
January 2025
Using Amazon Alexa to Control Custom IoT Gadgets
Circuit Cellar

Using Amazon Alexa to Control Custom IoT Gadgets

In part two of his article, Brian describes integrating custom IoT gadgets with Amazon Echo using emulation to receive spoken alarms. In part one, he used emulation and Arduino Cloud services as a middleman.

time-read
10+ Minuten  |
January 2025
Holiday Hangover Hardware Hacking
Circuit Cellar

Holiday Hangover Hardware Hacking

Having too much cheer during the holidays? In this month's article, Colin offers a diversion from the jolly season by urging developers to retreat to the basement to brush up on hardware hacking skills. He shows how a low-cost Raspberry Pi Pico and a TP-Link Tapo C200 smart IP camera could become the next automated bird deterrent or a home automation server.

time-read
8 Minuten  |
January 2025
Datasheet: Microamps Per Megahertz Ultra-Low Power MCUs Minimize Current Consumption
Circuit Cellar

Datasheet: Microamps Per Megahertz Ultra-Low Power MCUs Minimize Current Consumption

How do chip makers differentiate if many ultra-low power MCUs on the market feature the same processor core? The peripherals and different power states offer various ways to manage current consumption down to microamps per megahertz.

time-read
2 Minuten  |
January 2025
Smart Home Lock Down Matter Provides Security Blanket
Circuit Cellar

Smart Home Lock Down Matter Provides Security Blanket

As more devices in the smart home connect to the Internet, they become increasingly vulnerable to outside attacks. Developers can now add the latest security measures to their Smart Home devices through Matter.

time-read
10+ Minuten  |
January 2025
Basic Pulse Circuits
Circuit Cellar

Basic Pulse Circuits

In part one of a three-part series, Wolfgang wrote how basic pulse circuits help digital circuits, such as embedded boards with ARM processors, deal with pulse trains or bursts of pulses from the outside. In Part 2, he dives into enabling flip-flops, timing parameters, and synchronization, design tasks needed to capture, detect, and filter pulses.

time-read
10+ Minuten  |
January 2025
Building a Wi-Fi Router Watchdog
Circuit Cellar

Building a Wi-Fi Router Watchdog

Dev created a watchdog for a Wi-Fi extender using a Raspberry Pi Pico. This monitors Wi-Fi connectivity for his smart home lighting system, which would require a reset twice a year due to rapid power interruptions.

time-read
8 Minuten  |
January 2025
Create Your Own PCBs with a CNC Milling Machine
Circuit Cellar

Create Your Own PCBs with a CNC Milling Machine

Using KiCad, CopperCAM, and Candle Software

time-read
10+ Minuten  |
January 2025
Performance Bottlenecks in Embedded Linux Solutions Analysis, Identification, and Mitigation
Circuit Cellar

Performance Bottlenecks in Embedded Linux Solutions Analysis, Identification, and Mitigation

Good performance is a requirement for every technology, and system designers rely on operating systems to ensure fast and smooth transitions in critical applications. Fortunately, Pedro writes, the embedded Linux OS offers ways for finding, analyzing and mitigating performance bottlenecks so embedded systems can deliver the speed and efficiency that end users expect.

time-read
10+ Minuten  |
January 2025
Renesas New RA8 Entry-Line MCU Groups Brings High Performance of Arm Cortex-M85 Processor to Cost-Sensitive Applications with Market-Leading CoreMark Performance
Circuit Cellar

Renesas New RA8 Entry-Line MCU Groups Brings High Performance of Arm Cortex-M85 Processor to Cost-Sensitive Applications with Market-Leading CoreMark Performance

Renesas Electronics Corp., a premier supplier of advanced semiconductor solutions, introduced the RA8E1 and RA8E2 microcontroller (MCU) groups, extending the industry's most powerful series of MCUs.

time-read
1 min  |
December 2024