Ensuring Ethics in AI and Mitigating Bias
Open Source For You|April 2024
As AI solutions proliferate, ensuring they are not biased with respect to gender, religion, financial status, etc, has become of paramount importance. The good news is that there is a lot of work being done on that front.
Dr Magesh Kasthuri and Dr Anand Nayyar
Ensuring Ethics in AI and Mitigating Bias

Today, there is a paradigm shift from traditional AI systems that use statistical and mathematical probabilistic algorithms to those that use machine learning (ML) and deep learning (DL) models. As per Gartner, there are 34 different branches of AI system design in existence today. AIOps in cloud operations, DataOps in data engineering, predictive analytics in data science, and MLOps in industrial applications are some of the examples of new age AI applications.

Ray Kurzweil coined the term 'singularity' in AI, which means bringing AI closer to human intelligence (or natural intelligence). To achieve the highest level of accuracy in ML training, modelling and functioning, it is of utmost important to ensure fairness and correct any bias in AIML implementation. Bias cannot occur on its own but is the result of human inputs during the various stages of developing the AIML-based solution. 

When collecting data for training the model in ML, one must ensure the data is distributed fairly and that there is no bias. In the same way, when we label and group the data, train the model to simulate human-like thinking, deploy the model and interpret the results, we must do away with any pre-judgement or biased interests.

For example, bias with respect to race, income, sexual orientation, gender, religion, must be avoided when preparing the training data, training the system and interpreting the results from the ML execution.

There are many popular tools like IBM’s AI Fairness 360, Microsoft’s Fairlearn and Google’s What-if that are very useful to identify any bias in the training model and data collection.

Addressing bias in AI systems

Diese Geschichte stammt aus der April 2024-Ausgabe von Open Source For You.

Starten Sie Ihre 7-tägige kostenlose Testversion von Magzter GOLD, um auf Tausende kuratierte Premium-Storys sowie über 8.000 Zeitschriften und Zeitungen zuzugreifen.

Diese Geschichte stammt aus der April 2024-Ausgabe von Open Source For You.

Starten Sie Ihre 7-tägige kostenlose Testversion von Magzter GOLD, um auf Tausende kuratierte Premium-Storys sowie über 8.000 Zeitschriften und Zeitungen zuzugreifen.

WEITERE ARTIKEL AUS OPEN SOURCE FOR YOUAlle anzeigen
Amazon Bedrock: A Boon for the Financial Services Industry
Open Source For You

Amazon Bedrock: A Boon for the Financial Services Industry

Amazon Bedrock is a fully managed service that provides access to foundation models from top AI providers, enabling organisations to build and scale generative AI applications. It is specifically designed to bring AI solutions to the financial sector. Let's explore all that it can do...

time-read
9 Minuten  |
December 2024
Quantum-Safe VPNs: The Future of Secure Communication
Open Source For You

Quantum-Safe VPNs: The Future of Secure Communication

As quantum computing continues to advance, it poses a significant threat to traditional cryptographic algorithms that secure our digital communications. Virtual private networks (VPNs), which rely heavily on encryption, are particularly vulnerable. Quantum-safe VPNs utilise post-quantum cryptographic algorithms to protect against quantum attacks.

time-read
3 Minuten  |
December 2024
Popular Open Source Toolkits for Quantum Machine Learning
Open Source For You

Popular Open Source Toolkits for Quantum Machine Learning

Quantum machine learning is becoming increasingly popular due to its ability to solve the complex problems of the AI age. Here are a few open source libraries and frameworks that help with quantum computations.

time-read
5 Minuten  |
December 2024
Quantum Computing: Harnessing Open Source for Innovation and Accessibility
Open Source For You

Quantum Computing: Harnessing Open Source for Innovation and Accessibility

We explore how open source initiatives are shaping the future of quantum computing, making it more accessible and driving innovation through collaboration.

time-read
9 Minuten  |
December 2024
How Quantum Computing Differs from Classical Computing
Open Source For You

How Quantum Computing Differs from Classical Computing

Despite being in its infancy, quantum computing has numerous potential applications in modelling, cybersecurity, AI/ML, and other fields. But how do quantum and classical computing compare with each other? Let's find out...

time-read
4 Minuten  |
December 2024
From Bits to Qubits: The Growth Story of Quantum Computing
Open Source For You

From Bits to Qubits: The Growth Story of Quantum Computing

Quantum computing may still be in the early stages of evolution, but its potential impact on everyday life is significant. We delve into the key concepts behind it, the reasons for its rapid growth, and how global advancements are shaping its future.

time-read
10+ Minuten  |
December 2024
Pytket: A Comprehensive Guide to Quantum Circuit Design
Open Source For You

Pytket: A Comprehensive Guide to Quantum Circuit Design

Pytket stands out as a powerful toolkit in the realm of quantum computing, offering a suite of features that cater to both researchers and industry practitioners. Its key strengths include optimisation, platform-agnostic support, flexible quantum circuit design and hybrid algorithm support. These features make Pytket a versatile tool for various quantum computing applications, from machine learning and cryptography to optimisation problems in industrial settings.

time-read
10+ Minuten  |
December 2024
Cirq: The Open Source Framework for Programming Quantum Computers
Open Source For You

Cirq: The Open Source Framework for Programming Quantum Computers

Explore the key features, capabilities, and impact of Cirq, an open source quantum computing framework developed by Google, on the quantum programming landscape.

time-read
4 Minuten  |
December 2024
The Role of Open Source in Accelerating Quantum AI
Open Source For You

The Role of Open Source in Accelerating Quantum AI

Here's an overview of how open source frameworks are being utilised to build quantum machine learning models, including quantum neural networks and quantum kernel methods. The challenges and future directions in the quantum AI landscape are also discussed.

time-read
7 Minuten  |
December 2024
Quantum Machine Learning: An Overview
Open Source For You

Quantum Machine Learning: An Overview

Quantum machine learning (QML) is a burgeoning field at the intersection of quantum computing and artificial intelligence. In recent years, the integration of quantum mechanics with machine learning algorithms has sparked substantial interest among researchers and technologists alike. Here's a quick look at the essentials of creating quantum algorithms for AI models, their practical use cases on open source platforms, and best practices for implementing these advanced algorithms.

time-read
7 Minuten  |
December 2024