Why are black holes so difficult to study?
By definition, they cannot produce light, so they're elusive from that point of view. They are also the most compact objects that can be produced - if you could compress the Sun to a radius of about three kilometres, then you would produce a black hole. Because they are intrinsically compact and normally at very large distances, their projected size on the sky is extremely small, which is why it's so hard to see them.
So how can we 'see' black holes?
We can see the light produced by material falling onto a black hole. As it falls, the material becomes denser because it will be confined to a smaller and smaller region. It becomes hotter and more energetic and will eventually start shining. So the light we see is from outside the black hole. Some of that is very close to the black hole, but manages to be emitted before entering.
How did the Event Horizon Telescope (EHT) help image black holes?
Esta historia es de la edición April 2023 de BBC Sky at Night Magazine.
Comience su prueba gratuita de Magzter GOLD de 7 días para acceder a miles de historias premium seleccionadas y a más de 9,000 revistas y periódicos.
Ya eres suscriptor ? Conectar
Esta historia es de la edición April 2023 de BBC Sky at Night Magazine.
Comience su prueba gratuita de Magzter GOLD de 7 días para acceder a miles de historias premium seleccionadas y a más de 9,000 revistas y periódicos.
Ya eres suscriptor? Conectar
Could We Find Aliens by Looking for Their Solar Panels?- Designed to reflect ultraviolet and infrared, the panels have a unique fingerprint
Researchers searching for life beyond Earth spend a lot of time thinking about what telltale signs might be detectable astronomically. Forms of unambiguous evidence for the presence of life on another world are known as biosignatures. By extension, techno signatures are indicators of activity by intelligent, civilisation-building life.
Antimatter- In our continuing series, Govert Schilling looks at antimatter, the strange counterpart to most of the matter filling our Universe
Particles and corresponding antiparticles are very much alike, except they have opposite electrical charges. For instance, the antiparticle of the electron - known as the positron - has the same tiny mass, but while electrons carry a negative electrical charge, positrons are positively charged.
Where Have All The Milky Way's Early Stars Gone?- Our Galaxy has a curious lack of pristine stars
The Big Bang produced a Universe filled almost exclusively with hydrogen and helium; all other elements - what astronomers call metals - were produced by stars, supernovae and everything that happens later. So if you can pick out a pristine star with no metals polluting it from among the billions in the Milky Way, then you are likely to have a star dating from our Galaxy's earliest days.
Inside The Sky At Night - Two years ago, exoplanet scientist Hannah Wakeford received some of the first data from the JWST
Two years ago, exoplanet scientist Hannah Wakeford received some of the first data from the JWST. In July's Sky at Night, we discovered what she's learned since then.
How to stack DSLR data in Siril
Easily combine multiple frames to boost detailin your astro photos
Lunar occultation of Saturn
You'll need to strike a balance on 21 August to capture the Moon covering the ringed planet
How to plot a variable star light curve
A rewarding project to chart stars that change brightness
Smartphone photography with a telescope
Mary Mcintyre explains how to get impressive night-sky images using your phone
Once-a-century solar storm is overdue
If a Carrington Event struck today it would be catastrophic, says Minna Palmroth
The new era of human spaceflight
There's been a step-change in crewed space missions since the dawn of the 21st century. Ben Evans charts its course and looks ahead to future horizons