In our journey through the world of battery technology, we have discovered that ultraviolet/visible (UV/Vis) spectrophotometry is a game-changer. You might be wondering, “What exactly is that?” Well, it is a technique where light is passed through clear, liquid samples, covering the ultraviolet to visible parts of the electromagnetic spectrum.
Why is this important? It is vital for monitoring the evolution of electrolyte solutions in batteries, which is key to assessing their health and efficiency. Have you ever pondered how we can tell a battery’s health just by looking at it? It all boils down to the spectral changes over time, which unveil the degradation of electrolytes, influenced by various chemical and electrochemical reactions during the battery’s lifespan.
By focusing on key attributes like absorption spectrum, colour, transparency, and chemical composition, UV/Vis spectrophotometry offers invaluable insights into electrolyte deterioration and its impact on battery performance. Many professionals, particularly those in quality control and research and development sectors, use this technique to align electrolyte samples with established industry colour scales, especially in the yellow spectrum, such as the yellowness index or APHA.
This story is from the {{IssueName}} edition of {{MagazineName}}.
Start your 7-day Magzter GOLD free trial to access thousands of curated premium stories, and 9,000+ magazines and newspapers.
Already a subscriber ? Sign In
This story is from the {{IssueName}} edition of {{MagazineName}}.
Start your 7-day Magzter GOLD free trial to access thousands of curated premium stories, and 9,000+ magazines and newspapers.
Already a subscriber? Sign In
TRULY INNOVATIVE ELECTRONICS -INNOVATION UPDATES
Amongst numerous press releases of new products received by us, these are the ones we found worthy of the title Truly Innovative Electronics
Elastomer enhancing smart wearable performance
A high-tech, flexible wearable device made from the innovative elastomer material
Nanotechnology based noninvasive cancer diagnostics
Nanoflake sensors built from indium oxide with platinum and nickel detect changes in isoprene
Space communication with silent amplifiers
In the new communication system from researchers at Chalmers University of Technology, in Sweden, a weak optical signal (red) from the spacecraft's transmitter can be amplified noisefree when it encounters two so-called pump waves (blue and green) of different frequencies in a receiver on Earth.
Advancements in TOPCon solar cells
The structure and performance of tandem devices with highly passivated TOPCon bottom cells
Quantum leap in magnetism refines superconductors
Rice University physicists have uncovered key magnetic and electronic properties in kagome magnets, structures resembling basket-weaving patterns.
Sensor targets food antioxidants
A research team from Hunan City University and Xiangtan University in China has developed a sensor for detecting TBHQ, a food antioxidant used in oils and fats, addressing health concerns at high concentrations.
Data sensing with repurposed RFID tags
UC San Diego researchers have advanced passive data collection with a breakthrough in battery-free sensing.
Seal-inspired sensors to safeguard offshore wind farms
Schematic structure of the seal whisker-inspired flow sensors
Artificial nose identifies scents accurately
Artificial nose identifies scents accurately