Let us see here how it can be done.
Most supercomputers have interconnected CPUs with a master node CPU that divides a large computing task into smaller tasks. These smaller tasks are assigned to the interconnected CPUs, which work together to finish the task in much lesser time.
So let us design our own supercomputer, which would be a basic system where you can connect as many nodes as you want to fulfill your computation and processing need. We shall use single-board computers and connect them to each other and make one of them the master node. The master node would distribute the tasks and control all the other computers.
The components required for this project are listed under the Bill of Material table. The author's prototype is shown in Fig. 1.
Each node of the cluster for our supercomputer would need the components mentioned under the Bill of Material. To make a cluster supercomputer of 100 RPI, you would need the 100 sets of the above.
Harware designing
You can design either a simple rack based system or design a block of each node and connect the blocks to make a large cluster for personal use. Let us see how you can make a block-based cluster supercomputer, where each block has two CPUs with their own separate pre-configured power management and cooling systems. This design gives you the flexibility to add as many individual cluster blocks as required. You can achieve even one terabyte of computing power by adding enough of these single-node blocks.
Let us design the single block casing that can hold two RPi single-board computers and the cylindrical water cooling reservoir. In the case design keep two cuts on front side to expose the USB and Ethernet ports of RPi. Keep two holes at the bottom to pass the wires and connectors of power supply (see Fig. 2). Also make some vent holes for air circulation to keep the system cool.
ãã®èšäºã¯ Electronics For You ã® April 2023 çã«æ²èŒãããŠããŸãã
7 æ¥éã® Magzter GOLD ç¡æãã©ã€ã¢ã«ãéå§ããŠãäœåãã®å³éžããããã¬ãã¢ã ã¹ããŒãªãŒã9,000 以äžã®éèªãæ°èã«ã¢ã¯ã»ã¹ããŠãã ããã
ãã§ã«è³Œèªè ã§ã ?  ãµã€ã³ã€ã³
ãã®èšäºã¯ Electronics For You ã® April 2023 çã«æ²èŒãããŠããŸãã
7 æ¥éã® Magzter GOLD ç¡æãã©ã€ã¢ã«ãéå§ããŠãäœåãã®å³éžããããã¬ãã¢ã ã¹ããŒãªãŒã9,000 以äžã®éèªãæ°èã«ã¢ã¯ã»ã¹ããŠãã ããã
ãã§ã«è³Œèªè ã§ã? ãµã€ã³ã€ã³
TRULY INNOVATIVE ELECTRONICS -INNOVATION UPDATES
Amongst numerous press releases of new products received by us, these are the ones we found worthy of the title Truly Innovative Electronics
Elastomer enhancing smart wearable performance
A high-tech, flexible wearable device made from the innovative elastomer material
Nanotechnology based noninvasive cancer diagnostics
Nanoflake sensors built from indium oxide with platinum and nickel detect changes in isoprene
Space communication with silent amplifiers
In the new communication system from researchers at Chalmers University of Technology, in Sweden, a weak optical signal (red) from the spacecraft's transmitter can be amplified noisefree when it encounters two so-called pump waves (blue and green) of different frequencies in a receiver on Earth.
Advancements in TOPCon solar cells
The structure and performance of tandem devices with highly passivated TOPCon bottom cells
Quantum leap in magnetism refines superconductors
Rice University physicists have uncovered key magnetic and electronic properties in kagome magnets, structures resembling basket-weaving patterns.
Sensor targets food antioxidants
A research team from Hunan City University and Xiangtan University in China has developed a sensor for detecting TBHQ, a food antioxidant used in oils and fats, addressing health concerns at high concentrations.
Data sensing with repurposed RFID tags
UC San Diego researchers have advanced passive data collection with a breakthrough in battery-free sensing.
Seal-inspired sensors to safeguard offshore wind farms
Schematic structure of the seal whisker-inspired flow sensors
Artificial nose identifies scents accurately
Artificial nose identifies scents accurately