
Machine learning (ML) is a transformative field of artificial intelligence (AI) that empowers computers to learn and improve from experience without being explicitly programmed. Unlike traditional programming, where specific instructions are given to perform a task, ML algorithms enable systems to automatically learn patterns and make intelligent decisions based on data.
The significance of machine learning spans a multitude of industries, transforming the way we approach problem solving and decision-making. Consider the following real-world examples.
Healthcare
• Medical diagnosis: ML algorithms analyse patient data to assist in diagnosing diseases such as cancer and predicting patient outcomes.
• Drug discovery: ML accelerates the drug discovery process by identifying potential candidates for new medications.
Marketing
Recommendation systems: ML algorithms power recommendation engines on platforms like Netflix and Amazon, providing personalised suggestions based on user preferences.
Customer segmentation: Businesses use ML to segment customers based on behaviour, enabling targeted marketing campaigns.
Technology
• Speech recognition: Virtual assistants like Siri and Google Assistant utilise ML for accurate speech recognition and natural language processing.
ãã®èšäºã¯ Open Source For You ã® May 2024 çã«æ²èŒãããŠããŸãã
7 æ¥éã® Magzter GOLD ç¡æãã©ã€ã¢ã«ãéå§ããŠãäœåãã®å³éžããããã¬ãã¢ã ã¹ããŒãªãŒã9,000 以äžã®éèªãæ°èã«ã¢ã¯ã»ã¹ããŠãã ããã
ãã§ã«è³Œèªè ã§ã ?  ãµã€ã³ã€ã³
ãã®èšäºã¯ Open Source For You ã® May 2024 çã«æ²èŒãããŠããŸãã
7 æ¥éã® Magzter GOLD ç¡æãã©ã€ã¢ã«ãéå§ããŠãäœåãã®å³éžããããã¬ãã¢ã ã¹ããŒãªãŒã9,000 以äžã®éèªãæ°èã«ã¢ã¯ã»ã¹ããŠãã ããã
ãã§ã«è³Œèªè ã§ã? ãµã€ã³ã€ã³

Modelling Toeplitz Networks with SageMath
A Toeplitz network refers to a graph that has a comparable regularity in its structure. SageMath is an excellent tool for facilitating the creation, analysis, and visualisation of graphs. Hence, SageMath can be used to effectively model Toeplitz networks and get insights into their structural characteristics, leading to advancements in network design and analysis.

It's the Age of AI Agents!
Businesses must get ready to work with AI agents if they want to stay competitive. Many have already adopted them, while others are gearing up to do so. These agents will soon be part of almost every organisation, making up a large global digital workforce.

Building Machine Learning Models with Scikit-learn
Scikit-learn scores over other machine learning libraries because it is easy to use, comes with a comprehensive feature set, has strong community support, and is customisable. Here's a quick look at its features and use cases.

SageMath: Deeper Insights into Cybersecurity
In the previous article in this SageMath series (published in the January 2025 issue of OSFY), we concluded our discussion of classical encryption techniques and moved on to the exploration of modern cryptography by looking at symmetric-key cryptography. In this ninth article in the series, we will continue the focus on symmetric-key cryptography.

Why You Should Go for Grafana
Explore the main characteristics of Grafana, the open source analytics and visualisation tool for application in the Internet of Things, and see how it compares with other similar popular tools.

Metaverse and Digital Twins: Partnering to Innovate
Let's explore Al-powered digital twin technology and the Metaverse, delving into what they promise, their limitations, and how large language models and generative Al help address these challenges.

How Open Source LLMs are Shaping the Future of AI
The future of AI isn't locked behind proprietary paywallsâit's open and collaborative, with open source LLMs giving businesses the power to innovate on their own terms.

Netbooting a Large Language Model-based OS in an Ubuntu Live Server
This brief tutorial explores the wireless netbooting of the LLM model Gemini AI in an Ubuntu server.

NLP: Text Summarisation with Python
Here's a simple Python method based on the Natural Language Toolkit for extractive text summarisation in natural language processing.

MLOps vs AlOps: What, Where, and Why
MLOps and AIOps excel at driving efficiency and innovation in an organisation. Let's find out what they are, where they can be used, and why we should do so.