Cloud computing is here to stay because of the great advantages that it offers. Service providers offering cloud computing need to evaluate their services from time to time. Real-time and real world evaluation can prove to be costly and impractical, so simulation offers an easy way out. This article introduces a selection of open source cloud computing simulators.
The cloud and cloud computing are among the more recent advances in the field of information technology. IT infrastructure and applications are provided to end users as services, using a standard pay-as-per-use model. Cloud computing has become widely prevalent because of recent advances in areas like virtualisation, grid computing, Web computing, utility computing and related technologies. Cloud computing is a powerful tool for accessing high performance computing (HPC) and storage infrastructure at reduced prices via the Internet. Some of the key characteristics of cloud computing are: on-demand access, elasticity, cost-effectiveness, scalability, minimal infrastructure management and location independence. Trillions of dollars are being invested in cloud computing today.
It is not possible, in the real world, for systems administrators, cloud specialists and even researchers to have actual cloud infrastructure to perform realtime experiments and implement new algorithms and methodologies. Before real-time implementation, it is essential to first measure performance and take serious note of all possible security issues. To address such challenges and issues, modelling and simulation technologies come to our rescue. The need for a cloud computing simulator arises in order to witness an implementation scenario in real-time. Cloud simulators play a crucial role in reducing the complexity of the infrastructure, in executing new algorithms, analysing security threats and measuring the overall quality and performance of the infrastructure.
Several cloud computing simulators are being developed to assist researchers, systems administrators, cloud specialists and network administrators in measuring the real-time performance of cloud computing environments. Getting the right tool for a given scenario or knowing what features each tool has is a challenging and complex task.
This story is from the October 2016 edition of Open Source For You.
Start your 7-day Magzter GOLD free trial to access thousands of curated premium stories, and 9,000+ magazines and newspapers.
Already a subscriber ? Sign In
This story is from the October 2016 edition of Open Source For You.
Start your 7-day Magzter GOLD free trial to access thousands of curated premium stories, and 9,000+ magazines and newspapers.
Already a subscriber? Sign In
Amazon Bedrock: A Boon for the Financial Services Industry
Amazon Bedrock is a fully managed service that provides access to foundation models from top AI providers, enabling organisations to build and scale generative AI applications. It is specifically designed to bring AI solutions to the financial sector. Let's explore all that it can do...
Quantum-Safe VPNs: The Future of Secure Communication
As quantum computing continues to advance, it poses a significant threat to traditional cryptographic algorithms that secure our digital communications. Virtual private networks (VPNs), which rely heavily on encryption, are particularly vulnerable. Quantum-safe VPNs utilise post-quantum cryptographic algorithms to protect against quantum attacks.
Popular Open Source Toolkits for Quantum Machine Learning
Quantum machine learning is becoming increasingly popular due to its ability to solve the complex problems of the AI age. Here are a few open source libraries and frameworks that help with quantum computations.
Quantum Computing: Harnessing Open Source for Innovation and Accessibility
We explore how open source initiatives are shaping the future of quantum computing, making it more accessible and driving innovation through collaboration.
How Quantum Computing Differs from Classical Computing
Despite being in its infancy, quantum computing has numerous potential applications in modelling, cybersecurity, AI/ML, and other fields. But how do quantum and classical computing compare with each other? Let's find out...
From Bits to Qubits: The Growth Story of Quantum Computing
Quantum computing may still be in the early stages of evolution, but its potential impact on everyday life is significant. We delve into the key concepts behind it, the reasons for its rapid growth, and how global advancements are shaping its future.
Pytket: A Comprehensive Guide to Quantum Circuit Design
Pytket stands out as a powerful toolkit in the realm of quantum computing, offering a suite of features that cater to both researchers and industry practitioners. Its key strengths include optimisation, platform-agnostic support, flexible quantum circuit design and hybrid algorithm support. These features make Pytket a versatile tool for various quantum computing applications, from machine learning and cryptography to optimisation problems in industrial settings.
Cirq: The Open Source Framework for Programming Quantum Computers
Explore the key features, capabilities, and impact of Cirq, an open source quantum computing framework developed by Google, on the quantum programming landscape.
The Role of Open Source in Accelerating Quantum AI
Here's an overview of how open source frameworks are being utilised to build quantum machine learning models, including quantum neural networks and quantum kernel methods. The challenges and future directions in the quantum AI landscape are also discussed.
Quantum Machine Learning: An Overview
Quantum machine learning (QML) is a burgeoning field at the intersection of quantum computing and artificial intelligence. In recent years, the integration of quantum mechanics with machine learning algorithms has sparked substantial interest among researchers and technologists alike. Here's a quick look at the essentials of creating quantum algorithms for AI models, their practical use cases on open source platforms, and best practices for implementing these advanced algorithms.