A cloud refers to a server, public or private, accessible over a network, which is usually the internet. It generally has high processing power and storage, and is suitable for big computations. A cloud can be used to train Al models, but only when the data is available to it. On the other hand, since the cloud is generally a remote system, capturing data directly on it becomes difficult and not feasible. Capturing the data on local devices and transmitting it to the cloud does not always give real-time results. This is where the concept of federated learning comes in.
Federated learning promotes machine learning while the data is on the device. It handles a flexible architecture, which enables a secure process for sensitive data collection and model training. The world currently takes data privacy as an important responsibility. To introduce automation into fields like healthcare, biometrics, etc, real-time sensitive data is the core requirement. The important question therefore is: How do we train a model without collecting sensitive data from the users, storing it, and using it for training? To define optimal training for a machine learning model, relevance of data is an important aspect. Data is best when it comes directly from a source. But the permission for data collection becomes an issue.
With federated machine learning, model training can be centralised on a decentralised data feed.
This story is from the January 2023 edition of Electronics For You.
Start your 7-day Magzter GOLD free trial to access thousands of curated premium stories, and 9,000+ magazines and newspapers.
Already a subscriber ? Sign In
This story is from the January 2023 edition of Electronics For You.
Start your 7-day Magzter GOLD free trial to access thousands of curated premium stories, and 9,000+ magazines and newspapers.
Already a subscriber? Sign In
TRULY INNOVATIVE ELECTRONICS -INNOVATION UPDATES
Amongst numerous press releases of new products received by us, these are the ones we found worthy of the title Truly Innovative Electronics
Elastomer enhancing smart wearable performance
A high-tech, flexible wearable device made from the innovative elastomer material
Nanotechnology based noninvasive cancer diagnostics
Nanoflake sensors built from indium oxide with platinum and nickel detect changes in isoprene
Space communication with silent amplifiers
In the new communication system from researchers at Chalmers University of Technology, in Sweden, a weak optical signal (red) from the spacecraft's transmitter can be amplified noisefree when it encounters two so-called pump waves (blue and green) of different frequencies in a receiver on Earth.
Advancements in TOPCon solar cells
The structure and performance of tandem devices with highly passivated TOPCon bottom cells
Quantum leap in magnetism refines superconductors
Rice University physicists have uncovered key magnetic and electronic properties in kagome magnets, structures resembling basket-weaving patterns.
Sensor targets food antioxidants
A research team from Hunan City University and Xiangtan University in China has developed a sensor for detecting TBHQ, a food antioxidant used in oils and fats, addressing health concerns at high concentrations.
Data sensing with repurposed RFID tags
UC San Diego researchers have advanced passive data collection with a breakthrough in battery-free sensing.
Seal-inspired sensors to safeguard offshore wind farms
Schematic structure of the seal whisker-inspired flow sensors
Artificial nose identifies scents accurately
Artificial nose identifies scents accurately