The Working Limitations of Large Language Models
MIT Sloan Management Review|Winter 2024
Overestimating the capabilities of Al models like ChatGPT can lead to unreliable applications.
Mikhail Burtsev, Martin Reeves, and Adam Job
The Working Limitations of Large Language Models

Large language models (LLMs) seem set to transform businesses. Their ability to generate detailed, creative responses to queries in plain language and code has sparked a wave of excitement that led ChatGPT to reach 100 million users faster than any other technology after it first launched. Subsequently, investors poured over $40 billion into artificial intelligence startups in the first half of 2023 — more than 20% of all global venture capital investments — and companies from seedstage startups to tech giants are developing new applications of the technology.

But while LLMs are incredibly powerful, their ability to generate humanlike text can invite us to falsely credit them with other human capabilities, leading to misapplications of the technology. With a deeper understanding of how LLMs work and their fundamental limitations, managers can make more informed decisions about how LLMs are used in their organizations, addressing their shortcomings with a mix of complementary technologies and human governance.

The Mechanics of LLMs 

An LLM is fundamentally a machine learning model designed to predict the next element in a sequence of words. Earlier, more rudimentary language models operated sequentially, drawing from a probability distribution of words within their training data to predict the next word in a sequence. (Think of your smartphone keyboard suggesting the next word in a text message.) However, these models lack the ability to consider the larger context in which a word appears and its multiple meanings and associations.

This story is from the Winter 2024 edition of MIT Sloan Management Review.

Start your 7-day Magzter GOLD free trial to access thousands of curated premium stories, and 9,000+ magazines and newspapers.

This story is from the Winter 2024 edition of MIT Sloan Management Review.

Start your 7-day Magzter GOLD free trial to access thousands of curated premium stories, and 9,000+ magazines and newspapers.

MORE STORIES FROM MIT SLOAN MANAGEMENT REVIEWView All
Ask Sanyin: How Do You Build for an Unpredictable Future?
MIT Sloan Management Review

Ask Sanyin: How Do You Build for an Unpredictable Future?

While the pandemic was a wild ride of uncertainty for me and many of my peers in leadership, it feels like we never regained our footing.

time-read
2 mins  |
Winter 2025
What You Still Can't Say at Work
MIT Sloan Management Review

What You Still Can't Say at Work

Most people know what can’t be said in their organization. But leaders can apply these techniques to break through the unwritten rules that make people self-censor.

time-read
7 mins  |
Winter 2025
Make Character Count in Hiring and Promoting
MIT Sloan Management Review

Make Character Count in Hiring and Promoting

Most managers focus on competencies when evaluating candidates but it’s character that will transform the DNA of the organization. Here’s how to assess it.

time-read
10+ mins  |
Winter 2025
Why Influence Is a Two-Way Street
MIT Sloan Management Review

Why Influence Is a Two-Way Street

Managers achieve better outcomes when they prioritize collaborative decision-making over powers of persuasion.

time-read
10 mins  |
Winter 2025
Know Your Data to Harness Federated Machine Learning
MIT Sloan Management Review

Know Your Data to Harness Federated Machine Learning

A collaborative approach to training AI models can yield better results, but it requires finding partners with data that complements your own.

time-read
9 mins  |
Winter 2025
How Integrating DEI Into Strategy Lifts Performance
MIT Sloan Management Review

How Integrating DEI Into Strategy Lifts Performance

Incorporating diversity, equity, and inclusion practices into core business planning can provide a competitive edge.

time-read
9 mins  |
Winter 2025
The Myth of the Sustainable Consumer
MIT Sloan Management Review

The Myth of the Sustainable Consumer

Companies that understand the different kinds of consumers for sustainable products can market to them more effectively.

time-read
10+ mins  |
Winter 2025
A Practical Guide to Gaining Value From LLMs
MIT Sloan Management Review

A Practical Guide to Gaining Value From LLMs

Getting a return from generative AI investments requires a systematic approach to analyzing appropriate use cases.

time-read
10+ mins  |
Winter 2025
Improve Workflows by Managing Bottlenecks
MIT Sloan Management Review

Improve Workflows by Managing Bottlenecks

Understand whether process or resource constraints are stalling work.

time-read
10+ mins  |
Winter 2025
Craft Schedules That Work for Everyone
MIT Sloan Management Review

Craft Schedules That Work for Everyone

Business leaders can improve retention and business performance with schedules that make sense for workers’ lives.

time-read
10+ mins  |
Winter 2025