Containerisation in the cloud is a key aspect of modern cloud computing architectures, particularly in multi-cloud and hybrid cloud environments. It involves encapsulating applications and their dependencies into lightweight, standalone units known as containers. This approach offers several benefits, including portability, fault isolation, ease of management, and simplified security.
The rise of multi-cloud and hybrid cloud architectures has dramatically reshaped the IT landscape. These models offer businesses greater flexibility, scalability, and resilience. However, they also introduce new complexities and challenges. Here, open source software emerges as a crucial enabler, providing a foundation for building and managing these intricate environments. The popularity of open source container platforms like Dockers, Kubernetes and OpenStack has led to rapid adoption of “write once and run anywhere” across on-premises data centres, hybrid cloud and multicloud environments. In addition to the flexibility, the architecture design speeds up development and prevents cloud vendor lock-in.
Understanding multi-cloud and hybrid cloud
Containerisation has become a cornerstone of modern cloud computing. Its benefits, such as portability and resource efficiency, make it a game changer. Understanding containerisation involves grasping the concept of encapsulating applications and their dependencies into lightweight, standalone units known as containers. Multi-cloud and hybrid cloud are two prominent cloud computing architectures that have gained significant traction in recent years, enabling the containerisation of applications.
Multi-cloud: This refers to the use of multiple cloud platforms from different providers, such as AWS, Azure, and GCP. It offers increased flexibility, vendor independence, and disaster recovery capabilities.
Denne historien er fra November 2024-utgaven av Open Source For You.
Start din 7-dagers gratis prøveperiode på Magzter GOLD for å få tilgang til tusenvis av utvalgte premiumhistorier og 9000+ magasiner og aviser.
Allerede abonnent ? Logg på
Denne historien er fra November 2024-utgaven av Open Source For You.
Start din 7-dagers gratis prøveperiode på Magzter GOLD for å få tilgang til tusenvis av utvalgte premiumhistorier og 9000+ magasiner og aviser.
Allerede abonnent? Logg på
Helgrind: Detecting Synchronisation Issues in Multithreaded Programs
Let's explore how Helgrind can be used to detect and debug multithreading issues with the help of a multithreaded C program.
The Perfect Process of Booting a PC
Booting a PC seems as simple as eating a cake. But are you aware of all that goes on behind-the-scenes to bake a delicious cake or seamlessly boot a PC?
Exploring eBPF and its Integration with Kubernetes
eBPF, a game-changing technology that extends the capabilities of the Linux kernel, offers significant advantages for Kubernetes networking. It also greatly improves Kubernetes observability by capturing detailed telemetry data directly from the kernel. Read on to find out how its integration with Kubernetes has immense benefits.
Deploying Generative AI LLMs on Docker
Built on massive datasets, large language models or LLMS are closely associated with generative Al. Integrating these models with Docker has quite a few advantages.
Containerisation: The Cornerstone of Multi-Cloud and Hybrid Cloud Success
Open source containerisation software provides the flexibility, cost-effectiveness, and community support needed to build and manage complex multi-cloud and hybrid cloud environments. By leveraging this software, businesses can unlock the full potential of multicloud and hybrid cloud architectures while minimising vendor lock-in risks.
From Virtual Machines to Docker Containers: The Evolution of Software Development
Containerisation and Kubernetes have eased software development, making it faster and better. Let's see where these are headed, looking at trends that are making life easier for developers.
India's Leap in Supercomputing: Innovating for Tomorrow
As India strides towards self-sufficiency in supercomputing, embracing this evolution isn't just an option-it is pivotal for global competitiveness and technological leadership.
SageMath: A Quick Introduction to Cybersecurity
In the previous articles in this SageMath series, we delved into graph theory and explored its applications using SageMath. In this seventh article in the series, it is time to shift our focus to another crucial subfield of computer science: cybersecurity and cryptography.
Efficient Prompt Engineering: Getting the Right Answers
OpenAl's GPT-3 and GPT-4 are powerful tools that can generate human-like text, answer questions, and provide insights. However, the quality of these outputs depends heavily on how you frame the input, or prompt. Efficient prompt engineering ensures you get the right answers by designing inputs that guide the AI towards relevant, clear, and useful responses. Let's find out how to craft effective prompts with examples.
Analysing Linus Torvald's Critique of Docker
This article looks at Docker's security flaws, particularly its shared-kernel model, and contrasts it with traditional VMs for better isolation. It discusses Linus Torvalds' concerns, explores mitigation techniques, and proposes a roadmap for building a more secure containerisation platform using hardware-assisted virtualisation, true isolation, and a robust orchestration layer.