Mitigate Timing and Interference Issues on Multicore Processors
Circuit Cellar|August 2024
Missing multicore timing deadlines in a driver safety or aviation system is potentially catastropic. Adhering to guidance documents, and employing the appropriate testing and analysis methods ensures the efficient and deterministic execution of critical workloads.
Steve DiCamillo
Mitigate Timing and Interference Issues on Multicore Processors

Embedded software developers face unique challenges when dealing with timing and interference issues on heterogeneous multicore processor (MCP) based systems. Such systems offer higher CPU workload capacity and performance than single core processor (SCP) setups, but their complexity can make strict timing requirements extremely difficult to meet.

In hard real-time systems, deterministic execution is crucial for meeting operational and safety goals. Although MCP-based systems generally exhibit lower average execution times for a given set of tasks than do SCP systems, the distribution of these times is more variable.

This makes it difficult for developers to ensure precise timing for tasks, creating significant problems when they are building applications where meeting the worst execution times for individual tasks is more critical than meeting goals for average times.

To address such challenges, embedded software developers can turn to guidance documents like CAST-32A, AMC 20-193, and AC 20-193. In CAST-32A, the Certification Authorities Software Team (CAST) outlines important considerations for MCP timing and sets Software Development Life Cycle (SDLC) objectives for a better understanding of the behavior of a multicore system. While not prescriptive requirements, these objectives guide and support developers toward adhering to widely accepted standards like DO-178C.

In Europe, the AMC 20-193 document has superseded and replaced CAST-32A, and in the U.S., the AC 20-193 document has done the same. These successor documents, collectively referred to as A(M)C 20-193, largely duplicate the principles outlined in CAST-32A.

To apply the guidance from A(M)C 20-193, developers can employ various techniques for measuring timing and interference on MCPbased systems.

WORST-CASE EXECUTION TIMING

Esta historia es de la edición August 2024 de Circuit Cellar.

Comience su prueba gratuita de Magzter GOLD de 7 días para acceder a miles de historias premium seleccionadas y a más de 9,000 revistas y periódicos.

Esta historia es de la edición August 2024 de Circuit Cellar.

Comience su prueba gratuita de Magzter GOLD de 7 días para acceder a miles de historias premium seleccionadas y a más de 9,000 revistas y periódicos.

MÁS HISTORIAS DE CIRCUIT CELLARVer todo
Renesas New RA8 Entry-Line MCU Groups Brings High Performance of Arm Cortex-M85 Processor to Cost-Sensitive Applications with Market-Leading CoreMark Performance
Circuit Cellar

Renesas New RA8 Entry-Line MCU Groups Brings High Performance of Arm Cortex-M85 Processor to Cost-Sensitive Applications with Market-Leading CoreMark Performance

Renesas Electronics Corp., a premier supplier of advanced semiconductor solutions, introduced the RA8E1 and RA8E2 microcontroller (MCU) groups, extending the industry's most powerful series of MCUs.

time-read
1 min  |
December 2024
Same Sky Expands AMT Absolute Encoder Line to Support Larger Shaft Sizes
Circuit Cellar

Same Sky Expands AMT Absolute Encoder Line to Support Larger Shaft Sizes

Same Sky's Motion & Control Group announced the addition of a new series to its innovative AMT absolute encoder family designed to support larger motor shaft sizes from 9mm to 15.875mm (5/8 inch).

time-read
1 min  |
December 2024
XP Power Launches New Series of Low-Profile, Baseplate-Cooled DC-DC Brick Converters
Circuit Cellar

XP Power Launches New Series of Low-Profile, Baseplate-Cooled DC-DC Brick Converters

The RDF150 and RDF200 series are the latest additions to the RDF series of low-profile, baseplate-cooled, ultra-wide input DC-DC brick converters, which is already available in power outputs of 25W and 50W.

time-read
1 min  |
December 2024
HMI Introduces Ultra-Low Voltage 12-bit GPIO Expander with Interrupt Output
Circuit Cellar

HMI Introduces Ultra-Low Voltage 12-bit GPIO Expander with Interrupt Output

HMI, a leading provider of advanced analog and power management technologies, announced the launch of its HL5310, an innovative ultra-low voltage 12-bit GPIO expander featuring interrupt output.

time-read
1 min  |
December 2024
The Future of Embedded Chip Design Navigating the Chip Creation Space
Circuit Cellar

The Future of Embedded Chip Design Navigating the Chip Creation Space

Custom Silicon at Lower Cost, Reduced Development Time

time-read
6 minutos  |
December 2024
The Long and Winding Road
Circuit Cellar

The Long and Winding Road

From Maxim's RS-232 to WeMos ESP32: So Much to Do, So Little Time

time-read
10+ minutos  |
December 2024
Start to Finish Driving LCDs
Circuit Cellar

Start to Finish Driving LCDs

Lumex Display with Microchip Driver for a TI MCU

time-read
10+ minutos  |
December 2024
Easing the Path for App Releases
Circuit Cellar

Easing the Path for App Releases

Managed Development of React Native with Expo

time-read
10+ minutos  |
December 2024
Datasheet: Tiny Embedded Boards
Circuit Cellar

Datasheet: Tiny Embedded Boards

Deliver Power, Performance, and Versatility in Meager Square Millimeters

time-read
2 minutos  |
December 2024
Harvesting Ambient Energy
Circuit Cellar

Harvesting Ambient Energy

Hybrid Power Sources Cut IoT Battery Dependency

time-read
10+ minutos  |
December 2024