RFID Attendance Tracker - Employee Clocking System Arduino Project
Circuit Cellar|August 2024
Attendance trackers carry prohibitively high costs for small companies. Andrei shows us how to build a cost-effective, customizable employee clocking system with RFID technology. An Arduino board with Integration Platform as a Service allows attendance tracking with RFID cards to blend seamlessly with popular payroll systems.
Andrei Florian
RFID Attendance Tracker - Employee Clocking System Arduino Project

Employee clocking systems have come a long way since their inception in the late 19th century when the first mechanical time clock was invented by Willard Le Grand Bundy, a jeweller in New York. Initially designed to track workers' hours with greater accuracy, these systems have evolved significantly, embodying the technological advancements of each era.

Today, they serve a pivotal role in managing workforce efficiency and facilitating smooth payroll processing.

The purpose of clocking systems is multifaceted. Primarily, they provide a reliable method for recording employees' working hours, thereby streamlining payroll calculations and promoting fairness in the workplace. Today, these systems leverage different technologies to suit various organizational needs. Electronic timecard systems, biometric scanners, web-based applications, and sophisticated integration with HR management tools are just some of the innovations introducing a new level of precision and convenience, allowing employees to clock in and out with a simple fingerprint scan or a tap of an RFID card. This ease of use, coupled with real-time data analysis, enables organizations to optimise their workforce allocation, address inefficiencies, and even predict future staffing needs.

The impact of these systems extends beyond mere administrative benefits. They play a crucial role in enhancing overall productivity and job satisfaction. By ensuring accurate compensation for time worked, fostering transparency in timekeeping practices, and reducing administrative burdens, clocking systems contribute to a more engaged and motivated workforce.

Esta historia es de la edición August 2024 de Circuit Cellar.

Comience su prueba gratuita de Magzter GOLD de 7 días para acceder a miles de historias premium seleccionadas y a más de 9,000 revistas y periódicos.

Esta historia es de la edición August 2024 de Circuit Cellar.

Comience su prueba gratuita de Magzter GOLD de 7 días para acceder a miles de historias premium seleccionadas y a más de 9,000 revistas y periódicos.

MÁS HISTORIAS DE CIRCUIT CELLARVer todo
New TI MCUs Enable Edge AI and Industry-Leading Real-Time Control to Advance Efficiency, Safety, and Sustainability
Circuit Cellar

New TI MCUs Enable Edge AI and Industry-Leading Real-Time Control to Advance Efficiency, Safety, and Sustainability

Texas Instruments (TI) introduced two new series of real-time microcontrollers that deliver advancements to help engineers achieve more intelligent and secure processing in automotive and industrial applications.

time-read
1 min  |
January 2025
Using Amazon Alexa to Control Custom IoT Gadgets
Circuit Cellar

Using Amazon Alexa to Control Custom IoT Gadgets

In part two of his article, Brian describes integrating custom IoT gadgets with Amazon Echo using emulation to receive spoken alarms. In part one, he used emulation and Arduino Cloud services as a middleman.

time-read
10+ minutos  |
January 2025
Holiday Hangover Hardware Hacking
Circuit Cellar

Holiday Hangover Hardware Hacking

Having too much cheer during the holidays? In this month's article, Colin offers a diversion from the jolly season by urging developers to retreat to the basement to brush up on hardware hacking skills. He shows how a low-cost Raspberry Pi Pico and a TP-Link Tapo C200 smart IP camera could become the next automated bird deterrent or a home automation server.

time-read
8 minutos  |
January 2025
Datasheet: Microamps Per Megahertz Ultra-Low Power MCUs Minimize Current Consumption
Circuit Cellar

Datasheet: Microamps Per Megahertz Ultra-Low Power MCUs Minimize Current Consumption

How do chip makers differentiate if many ultra-low power MCUs on the market feature the same processor core? The peripherals and different power states offer various ways to manage current consumption down to microamps per megahertz.

time-read
2 minutos  |
January 2025
Smart Home Lock Down Matter Provides Security Blanket
Circuit Cellar

Smart Home Lock Down Matter Provides Security Blanket

As more devices in the smart home connect to the Internet, they become increasingly vulnerable to outside attacks. Developers can now add the latest security measures to their Smart Home devices through Matter.

time-read
10+ minutos  |
January 2025
Basic Pulse Circuits
Circuit Cellar

Basic Pulse Circuits

In part one of a three-part series, Wolfgang wrote how basic pulse circuits help digital circuits, such as embedded boards with ARM processors, deal with pulse trains or bursts of pulses from the outside. In Part 2, he dives into enabling flip-flops, timing parameters, and synchronization, design tasks needed to capture, detect, and filter pulses.

time-read
10+ minutos  |
January 2025
Building a Wi-Fi Router Watchdog
Circuit Cellar

Building a Wi-Fi Router Watchdog

Dev created a watchdog for a Wi-Fi extender using a Raspberry Pi Pico. This monitors Wi-Fi connectivity for his smart home lighting system, which would require a reset twice a year due to rapid power interruptions.

time-read
8 minutos  |
January 2025
Create Your Own PCBs with a CNC Milling Machine
Circuit Cellar

Create Your Own PCBs with a CNC Milling Machine

Using KiCad, CopperCAM, and Candle Software

time-read
10+ minutos  |
January 2025
Performance Bottlenecks in Embedded Linux Solutions Analysis, Identification, and Mitigation
Circuit Cellar

Performance Bottlenecks in Embedded Linux Solutions Analysis, Identification, and Mitigation

Good performance is a requirement for every technology, and system designers rely on operating systems to ensure fast and smooth transitions in critical applications. Fortunately, Pedro writes, the embedded Linux OS offers ways for finding, analyzing and mitigating performance bottlenecks so embedded systems can deliver the speed and efficiency that end users expect.

time-read
10+ minutos  |
January 2025
Renesas New RA8 Entry-Line MCU Groups Brings High Performance of Arm Cortex-M85 Processor to Cost-Sensitive Applications with Market-Leading CoreMark Performance
Circuit Cellar

Renesas New RA8 Entry-Line MCU Groups Brings High Performance of Arm Cortex-M85 Processor to Cost-Sensitive Applications with Market-Leading CoreMark Performance

Renesas Electronics Corp., a premier supplier of advanced semiconductor solutions, introduced the RA8E1 and RA8E2 microcontroller (MCU) groups, extending the industry's most powerful series of MCUs.

time-read
1 min  |
December 2024